

Hilton @ St

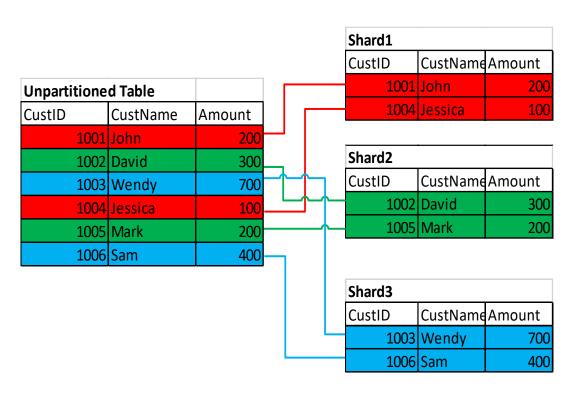
Kai Yu

Distinguished Engineer

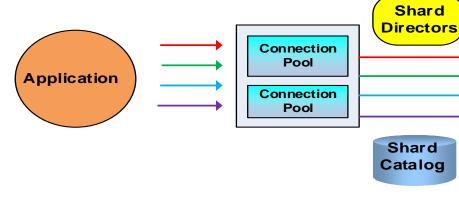
Database Solutions Engineering, Dell EMC

Kai Yu

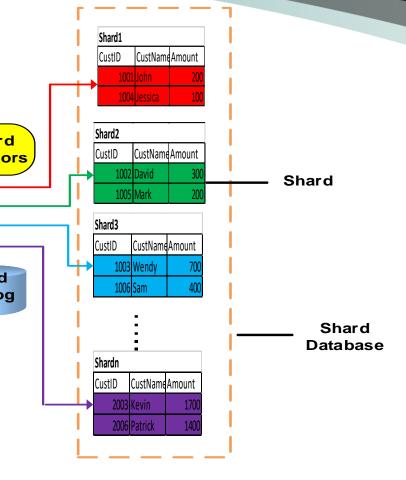
- Distinguished Engineer, Dell EMC Database Engineering
- 25+ years working in IT Industry
- Specializing in Oracle Database, Cloud, Virtualization
- Author and Speaker at IEEE and Oracle Conferences
- IOUG Cloud Computing SIG Co-founder and VP
- Oracle ACE Director
- Co-recipient of the 2011 OAUG Innovator of Year
- 2012 Oracle Excellence Award- Technologist of the
- Year: Cloud Architect by Oracle Magazine
- My Blog: http://kyuoracleblog.wordpress.com/



Agenda


- Oracle Sharding Architecture Overview
- Deployment of Oracle Sharded Databases
- An Oracle Sharding POC project

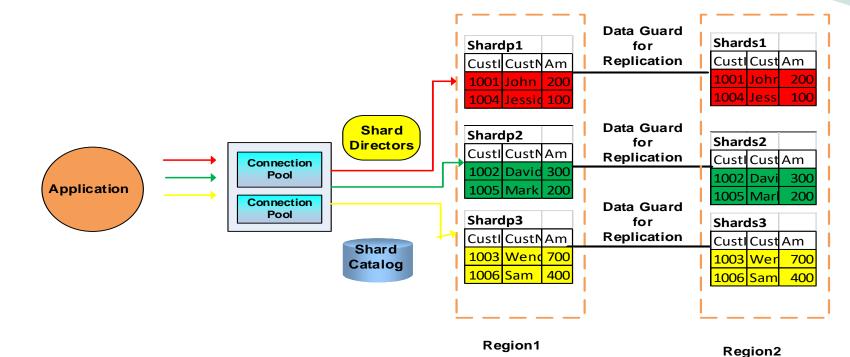
- A data tier architecture introduced in 12.2, data horizontally partitioned across independent databases.
- Data horizontally partitioned
 - Table split : sharded table
 - Same columns, subset of rows
- Multiple sharded databases
 - Each in dedicated server
 - Own local hardware
 - Shared nothing between sharded databases
 - Different architecture from RAC
 - Compare with Table Partitioning
- Application point of view:
 - Logical group as a single database
 - Data partition transparent to application


Horizon Table Partition in Sharding

Oracle Sharding Architecture:

- Components:
 - Sharding Database (SDB)
 - Shards
 - Shard Catalog:
 - Shard Director

Oracle Sharding: major components:


- Sharding Database (SDB): a single logical database horizontally partitioned across of pool of Oracle Databases(Shards)
- Shards
 - Independent physical Oracle database, Host a subset of the sharded database
 - With local resources: CPU, memory, disks (no shared disks)
 - Shared no hardware and software between shards
 - Shards are replicated for HA or DR with Oracle replication.
 - Standby/primary: same region for HA; different regions for DR
- Global Service Manager (GSM)/Shard Director
 - **GSM**: route connections based on database roles, load, replication lag locality. Transfer the connections based on the real-time load balancing
 - Shard Director: a specific implementation of GSM for sharding
 - Maintain the current topology map of SDB
 - Route connections to appropriate shard based on the sharding key
 - Deploy multiple Shard Directors for HA purpose.

- Shard Director (continued)
 - Maintain the SDB configuration and availability of shards in runtime
 - Monitor network latency between its regions
 - Regional listener for clients to connect to an SDB
 - Manage global services
 - Perform connection load balancing
- Shard Catalog:
 - A special purpose Oracle Database required by GSM
 - Stores the configuration of GSM, database and service metadata
 - where all configuration shards/global service change are initiated
 - All DDLs in a SDB executed by connecting to the shard Catalog
 - Stores the master copy of all duplicated tables in SDB
 - Automatically replicate changes to duplicated tables in all shards
 - Automated shared deployment, centralized management,
- Management of SDB: EM Cloud control and GDSCTL (command-line interface)

Oracle Sharding integrated with replication for High Availability or DR

- Supported Replication
 - Oracle Data Guard
 - Oracle GoldGate
- Shardgroups: primary shardgroupP has: shardp1, shardp2 secondary shardgroupS has: shards1, shards2
- Primary and Secondary can be same/region(data center) or different regions(data centers)

Applications Suitable for Oracle Sharding

- Benefits of the Oracle Sharding
 - Linear Scalability: make it possible to linearly scale the performance isolating availability and performance issue in a shard
 - Fault isolation
 Sharing nothing architecture between shard isolates the availability and performance issue and maintenance within a shard.
 - Support HA and DR with the replication between shards.
 - Data dependent routing automatically routines connections to proper shards
 - Geographical distribution
 - Simplify deployment and life cycle management
- Applications suitable for Oracle Sharding
 - OLTP applications that are suitable for sharding
 - Well-defined Data model and data distribution: eg sharding key Data associated with a single value of sharding key such as online store application: customer_id as sharding key

Shard Database Schema Design

- Sharded tables
 - A shard table is partitioned into smaller pieces in multiple shards
 - SQL issued by applications don't have to refer to shard
 - Partitions distributed across shards at the tablespace level by shard key: each partition is in one tablespace unit in one shard:

 - Sharded table family: a set of tables that are shared in the same way:

```
Example: customer table sharded with sharding key custID its child tables: orders(orderNO, custID, orderDate) order_items(itemNO, orderNO, custID, prodID, quantity) custID: sharding key for all three tables,
```

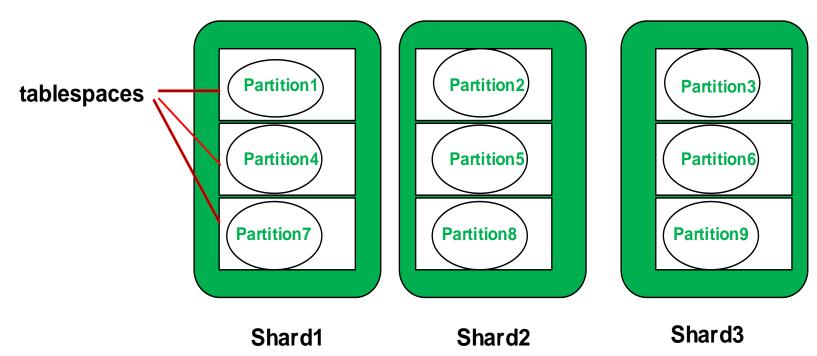
TRAINING DAY AUGUST 1, 2019

Shard Database Schema Design

Application	Point of Vie	w		Sharded 1	able Fam	ily			
Customer			Shard1	Customers			Orders		
CustID	CustName	Amount		CustID	CustName	Amount	OrderNO	CustNO	OrderDate
1001	John	200		1001	John	200	100	1001	1/1/2018
1002	David	300		1004	Jessica	100	104	1001	2/1/2018
1003	Wendy	700		Customers			105	1004	2/5/2018
1004	Jessica	100	Shard2	CustID	CustName	Amount	Orders		
1005	Mark	200		1002	David	300	OrderNO	CustNO	OrderDate
1006	Sam	400		1005	Mark	200	103	1002	1/1/2018
Orders							109	1005	4/5/2018
OrderNO	CustNO	OrderDate	Shard3	Customers			110	1005	7/1/2018
100	1001	1/1/2018		CustID	CustName	Amount			
104	1001	2/1/2018		1003	Wendy	700	Orders		
103	1002	1/1/2018		1006	Sam	400	OrderNO	CustNO	OrderDate
111	1002	1/15/2018					111	1002	1/15/2018
105	1004	2/5/2018					112	1006	2/19/2018
109	1005	4/5/2018							
110	1005	7/1/2018							
112	1006	2/19/2018							

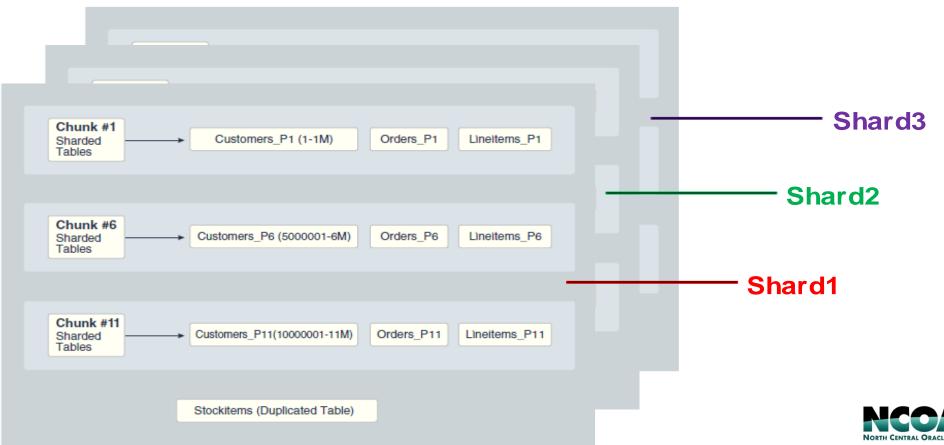
• A Primary key is sharding key or is prefixed by sharding key customer table: custID: for primary key and sharding key orders table: sharding key: custID, primary key: custID+orderNO order_items tables: sharding key: custID

primary key: custID+orderNo +itemNo


Shard Database Schema Design

- Duplicated table
 - Tables have same contents and duplicated on all shards, such as reference information like Products table, shared by all customers in shards can not be sharded.
 - Synchronize the duplicated tables using materialized view
- Non-table objects created on all shards:
 - non-table objects can be created in shards
 - Only table creation need extra key words: Sharded/Duplicated
 - Enable shard DDL for the session: alter session enable shard ddl;
- Execute DDL in a sharded database:
 - Use GDSTRL sql: GDSTL>sql "create tablespace tspset"
 - Connect to shardcatlog: using sqlplus: SQL> create tablespace tspset;

Shard Database: Physical Organization


- Partitions, tablespaces, shards
 - Sharding is distributed partitioning, different from table partition
 - Each partition is stored in a separate tablespace in shard.
 - Partitions are stored in a tablespace set that reside on different shards

Shard Database: Physical Organization

- Partitions, tablespaces, chunks, shards
 - Grouping corresponding partitions of a table family: a chunk
 - Contains a single partition of each table of a table family.

Sharding Methods

- System-managed sharding
 - Data is automatically partitioned and distributed across shards
 - Automatically maintain balanced distribution when adding/removing shards
 - Benefit: No need for users to involve data partitioning
 - Use consistent hash to map the partition key to # of partition
 - Use key word Partition by CONSISTENT HASH(SHARDKING_KEY)
- User-Defined Sharding
 - Users explicitly specify the mapping of data to individual shards
 - Users need to monitor and maintain the balanced distributions
 - Partitioned by range or list.

Create sharded table customers

```
(custID NUNBER, Customer_name VARCHAR(30) state_code VARCHAR(2), Status VARCHAR(1) Partition by List(state_code))
```


Sharding Methods

```
(Partition p_pacific('CA', 'OR','WA') tablespace ts_1
Partition p west('UT','WY','CO') tablespace ts 2
Partition p southwest('AZ','NM','TX',) tablespace ts 3
Partition p_east('NY','VM','NJ','MA') tablespace ts_4)
```

Use shardspace for user-defined sharding

 a set of shards that stores the data of range or list of key values It must be created and populated with shards in GDSCTL:

```
ADD SHARDSPACE –SHARDSPACE pacific, west, east;
   ADD SHARD —CONNECT shard-1 —SHARDSPACE pacific;
  ADD SHARD -CONNECT shard-2 -SHARDSPACE west;
  ADD SHARD —CONNECT shard-3 —SHARDSPACE east;
Then create tablespace in shardspace:
  CREATE TABLESPACE ts1 IN SHARDSPACE pacific;
  CREATE TABLESPACE ts2 IN SHARDSPACE west;
  CREATE TABLESPACE ts3 IN SHARDSPACE west;
  CREATE TABLESPACE ts4 IN SHARDSPACE east;
```


Sharding Methods

Key values	Partition	Tablespace	Shardspace	Shard
('CA', 'OR','WA')	p_pacific	ts1	pacific	shard-1
('UT','WY','CO')	p_west	ts2	west	shard-2
('AZ','NW','TX')	p_southwest	ts3	west	shard-2
('NY','VM','NJ','MA')	p_east	ts4	east	shard-3

- Composite sharding
 - Combination of user-defined and system-managed sharding
 - Take benefits of both sharding methods
 - Two levels of sharding:
 - Data first partitioned by list or range across multiple shardspaces
 - Then further partitioned by consistent hash across multiple shards in each shardspace.

Oracle 18c new features for Sharding:

- User-defined sharding
 - 12cR2 introduced system-managed sharding and composite sharding.
 - 18c introduced User-defined sharding
- PDB sharding
 - Allow to use PDB as shards or catalog database
 - 18c supports shard as a single PDB in a given CDB
 - A CDB can contain other non-shard PDBs
- RAC sharding
 - Enable to logically affinitize table partitions to RAC instance
 - Allows the requests that specify a sharding key are rounted to the instance
 - Enable RAC sharing feature: alter system enable affinity
- Midtier sharding:
 - For multitier application, applications tier are sharded
 - Topology server has sharded DB info, REST_API call to the Topology server to rount the request to the midtier associated with the sharding key

Oracle 19c new features for Sharding:

- Multiple Table Family support for System-managed Sharding
 - 18c only one table family for each sharded database.
 - 19c supports for multiple table families, system-managed shared database only
- Support for multiple PDB-shards in the same CDB
 - 18c: a single PDB in a CDB can be used as shard or shard catalog database
 - 19c:more than one PDB in a CDB can be used as shard or shard catalog database a CDB contains shard PDBs from different sharded databases.
 - A CDB can contain other non-shard PDBs
- Unique Sequence numbers across Shards
 - 19c allow you to independently generate sequence number on each shard
 - Add shard and noshard clauses to sequence object DDL
- Enable multiple shards query coordinators on Oracle Active Data Guard standbys of the shard catalog database.
- Propagation of parameter settings across shards:
 allow DBSs to centrally mange and parameters settings: shard catalogs and shads

- Options:
 - Deploy Oracle Sharding in Oracle Cloud: System Managed Sharding with Active Data Guard on Oracle Cloud (DBCS) Cookbook, Oracle Whitepaper
 - Try it in your own systems:
- Environment Settings
 - Software installations
 - Prerequisite checks and settings
 - Create sharding database
 - Create sharded tables

- Environment Settings
 - One Shard Director (GSM) on fldcnode9
 - One Shard Catalog Database (SDB) on fldcnode9
 - Three Shards on fldcnode10, fldcnode11, fldcnode12
- Software Installations
 - Download and Install Oracle database software on all the hosts for both shard catalog and database shards
 - Download and install Oracle Global Service Manager on the hosts for shard directors

- Prerequisite Checks and Settings
 - Disable iptable on Catalog and all Shard Databases [root@fldcnode9]# service iptables stop [root@fldcnode9]# service iptables status iptables: Firewall is not running. [root@fldcnode9]# chkconfig iptables off
 - Create necessary directories
 [oracle@fldcnode9]\$ export ORACLE_BASE=/u01/app/oracle
 [oracle@fldcnode9]\$ mkdir -p \$ORACLE_BASE/oradata
 [oracle@fldcnode9]\$ mkdir -p \$ORACLE_BASE/fast_recovery_area

- Prerequisite Checks and Settings
 - Check ownership and permissions for following directories and files chown root \$ORACLE_HOME/bin/extjob chmod 4750 \$ORACLE_HOME/bin/extjob chown root \$ORACLE_HOME/rdbms/admin/externaljob.ora chmod 640 \$ORACLE_HOME/rdbms/admin/externaljob.ora chown root \$ORACLE_HOME/bin/jssu chmod 4750 \$ORACLE_HOME/bin/jssu

```
[oracle@fldcnode9]$ Is -ltr $ORACLE_HOME/bin/extjob
-rwsr-x--- 1 root oinstall 2592299 Sep 13 19:11 /u01/app/oracle/product/12.2.0/db_1/bin/extjob
[oracle@fldcnode9]$ Is -ltr $ORACLE_HOME/rdbms/admin/externaljob.ora
-rw-r----- 1 root oinstall 1534 Dec 21 2005
/u01/app/oracle/product/12.2.0/db_1/rdbms/admin/externaljob.ora
[oracle@fldcnode9]$ Is -ltr $ORACLE_HOME/bin/jssu
-rwsr-x--- 1 root oinstall 2377646 Sep 13 19:11 /u01/app/oracle/product/12.2.0/db_1/bin/jssu
```

- Create Shard database
 - Prepare Catalog database
 - Add GSM and Start GSM
 - Create Shard Catalog (SDB)
 - Create Shards
 - Deploy
 - Create and Start Global Services
 - Create Application User/Schema with Necessary Privileges
 - Create Tablespace for Shards
 - Create Sharded Tables and Duplicated Tables

- Implementation
 - Prepare Catalog database
 - Create the database with DBCA to host the shard catalog
 - Create GDS user with necessary privileges in Catalog database

```
[oracle@fldcnode9]$ sqlplus / as sysdba

SQL> alter system set db_create_file_dest='/u01/app/oracle/oradata' scope=both;

SQL> alter system set open_links=16 scope=spfile;

SQL> alter system set open_links_per_instance=16 scope=spfile;

SQL> alter user gsmcatuser identified by gsmcatuser account unlock;

SQL> create user mygdsadmin identified by mygdsadmin;

SQL> grant connect, create session, gsmadmin_role to mygdsadmin;

SQL> grant inherit privileges on user SYS to GSMADMIN INTERNAL;
```

Enable Trace and Restart Catalog database

```
SQL> alter system set events 'immediate trace name GWM_TRACE level 7';

SQL> alter system set event='10798 trace name context forever, level 7' s cope=spfile;
```

Restart the catalog database

- Implementation
 - Prepare Catalog database
 - Configure the Remote Scheduler [oracle@fldcnode9]\$. shdcat.sh [oracle@fldcnode9]\$ sqlplus / as sysdba SQL> @?/rdbms/admin/prvtrsch.plb SQL> exec dbms_xdb.sethttpport(8080); SQL> exec DBMS_SCHEDULER.SET_AGENT_REGISTRATION_PASS('oracleagent'); SQL> alter system register;

- Implementation
 - Prepare Catalog database
 - Start scheduler and register database on SDB and all Shard Servers

```
[oracle@fldcnode10]$.shd1.sh
[oracle@fldcnode10]$ schagent -start
Scheduler agent started using port 26871
[oracle@fldcnode10$ schagent -status
Agent running with PID 814
Agent_version:12.2.0.1.0
Running_time:00:00:13
Total_jobs_run:0
Running jobs:0
Platform:Linux
ORACLE HOME:/u01/app/oracle/product/12.2.0/db 1
ORACLE BASE:/u01/app/oracle
Port:26871
Host:fldcnode10
[oracle@fldcnode10]$ echo oracleagent | schagent -registerdatabase fldcnode10
Agent Registration Password?
Oracle Scheduler Agent Registration for 12.2.0.1.0 Agent
Agent Registration Successful!
```


GDSCTL> set qsm -qsm sharddirector1

- Implementation
 - Add GSM and Start GSM

```
[oracle@fldcnode9]$ . shd dir1.sh
[oracle@fldcnode9]$ echo $ORACLE_HOME
/u01/app/oracle/product/12.2.0/gsm_1
[oracle@fldcnode9]$ qdsctl
GDSCTL: Version 12.2.0.1.0 - Production on Wed Sep 26 18:10:46 CDT 2018
Copyright (c) 2011, 2016, Oracle. All rights reserved.
Welcome to GDSCTL, type "help" for information
GDSCTL> connect mygdsadmin/mygdsadmin
Catalog connection is established
GDSCTL> add qsm -qsm sharddirector1 -listener 1571 -pwd qsmcatuser -catalog
fldcnode9:1521:shdcat -region region1 -trace level 16
GSM successfully added
GDSCTL> start qsm -qsm sharddirector1
GSM is started successfully
GDSCTL> set _event 17 -config_only
Event 17 is set
```


region1

Implementation

GDS region

Check GSM status

```
GDSCTL> status qsm
Alias
               SHARDDIRECTOR1
Version
                12.2.0.1.0
Start Date
                 26-SEP-2018 21:12:32
Trace Level
                 support
                   /u01/app/oracle/diag/gsm/fldcnode9/sharddirector1/alert/log.xml
Listener Log File
                   /u01/app/oracle/diag/gsm/fldcnode9/sharddirector1/trace/ora 33205 139712583494496.trc
Listener Trace File
                      (ADDRESS=(HOST=fldcnode9)(PORT=1571)(PROTOCOL=tcp))
Endpoint summary
GSMOCI Version
                     2.2.1
Mastership
Connected to GDS catalog Y
Process Id
                 33288
Number of reconnections 0
Pending tasks.
               Total 0
Tasks in process. Total 0
Regional Mastership
                      TRUE
Total messages published 0
Time Zone
                  -05:00
Orphaned Buddy Regions: None
```


- Implementation
 - Create Shard Catalog [oracle@fldcnode9]\$. shd_dir1.sh [oracle@fldcnode9]\$ gdsctl

GDSCTL> create shardcatalog -database *fldcnode9*:1521:shdcat -chunks 12 - user mygdsadmin/mygdsadmin -sdb shdcat -region region1,region2 - agent_port 8080

Catalog is created

Implementation

Create Shard Groups and Shards

GDSCTL> add shardgroup -shardgroup primary_shardgroup -deploy_as primary -region region1

The operation completed successfully

GDSCTL> add invitednode fldcnode10

GDSCTL> create shard -shardgroup shgrp1 -destination fldcnode10 -osaccount oracle -ospassword oracle

The operation completed successfully

DB Unique Name: sh1

GDSCTL> add invitednode fldcnode11

GDSCTL> create shard -shardgroup shgrp1 -destination fldcnode11 -osaccount oracle -ospassword oracle

GDSCTL> add invitednode fldcnode12

GDSCTL> create shard -shardgroup shgrp1 -destination fldcnode12 -osaccount oracle -ospassword oracle

GDSCTL> config shard

Catalog connection is established

Name	Shard Group	Status	State	Region
Availability				
sh1	shgrp1	U	none	region1 -
sh21	shgrp1	U	none	region1 -
sh41	shgrp1	U	none	region1 -

- Implementation
 - Deploy
 - Deploy invokes netca and dbca to configure listener and create database (shards) on each servers added to the SDB
 - GDSCTL> deploy

```
GDSCTL>deploy
deploy: examining configuration...
deploy: deploying primary shard 'sh1' ...
deploy: network listener configuration successful at destination 'fldcnode10'
deploy: starting DBCA at destination 'fldcnodel0' to create primary shard 'sh1' ...
deploy: deploying primary shard 'sh21' ...
deploy: network listener configuration successful at destination 'fldcnodell'
deploy: starting DBCA at destination 'fldcnodell' to create primary shard 'sh21' ...
deploy: deploying primary shard 'sh41' ...
deploy: network listener configuration successful at destination 'fldcnode12'
deploy: starting DBCA at destination 'fldcnode12' to create primary shard 'sh41' ...
deploy: waiting for 3 DBCA primary creation job(s) to complete...
deploy: waiting for 3 DBCA primary creation job(s) to complete...
deploy: waiting for 3 DBCA primary creation job(s) to complete...
deploy: waiting for 3 DBCA primary creation job(s) to complete...
deploy: waiting for 3 DBCA primary creation job(s) to complete...
deploy: waiting for 3 DBCA primary creation job(s) to complete...
deploy: waiting for 3 DBCA primary creation job(s) to complete...
deploy: waiting for 3 DBCA primary creation job(s) to complete...
deploy: DBCA primary creation job succeeded at destination 'fldcnode12' for shard 'sh41'
deploy: DBCA primary creation job succeeded at destination 'fldcnode10' for shard 'sh1'
deploy: DBCA primary creation job succeeded at destination 'fldcnodell' for shard 'sh21'
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
he operation completed successfully
```


Implementation

Deploy

GDSCTL> config shard
Catalog connection is established

Name Availability	Shard Group	Status	State	Region	
sh1 Online	shgrp1	Ok	Deployed	region1	
sh21 Online	shgrp1	Ok	Deployed	region1	
sh41 Online	shgrp1	Ok	Deployed	region1	

- Implementation
 - Verify all Shards are registered
 - \$gdsctl

GDSctl>databases

```
[oracle@fldcnode9 ~]$ gdsctl
GDSCTL: Version 12.2.0.1.0 - Production on Thu Oct 18 09:30:07 CDT 2018
Copyright (c) 2011, 2016, Oracle. All rights reserved.
Welcome to GDSCTL, type "help" for information.
Current GSM is set to SHARDDIRECTOR1
GDSCTL>databases
Database: "sh1" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1 Region: region1
  Service: "oltp rw srvc" Globally started: Y Started: Y
           Scan: N Enabled: Y Preferred: Y
  Registered instances:
    cust sdb%1
Database: "sh21" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1 Region: region1
  Service: "oltp rw srvc" Globally started: Y Started: Y
           Scan: N Enabled: Y Preferred: Y
  Registered instances:
    cust sdb%11
Database: "sh41" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1 Region: region1
  Service: "oltp rw srvc" Globally started: Y Started: Y
           Scan: N Enabled: Y Preferred: Y
  Registered instances:
```

Implementation

Create and Start Global Services

GDSCTL>add service -service prim srv -role primary GDSCTL>add service -service oltp_rw_srvc -role primary The operation completed successfully

GDSCTL>config service

Name	Network name	Pool	Started	Preferred all
oltp_rw_srvc	oltp_rw_srvc.cust_sdb.oradbcloud	cust_sdb	No	Yes

GDSCTL>start service -service oltp rw srvc

The operation completed successfully

GDSCTL>config service

Name	Network name	Pool	Started Preferred all
oltp_rw_srvc	oltp_rw_srvc.cust_sdb.oradbcloud	cust_sdb	Yes Yes

GDSCTL>status service

```
Service "oltp_rw_srvc.cust_sdb.oradbcloud" has 3 instance(s). Affinity: ANYWHERE
 Instance "cust_sdb%1", name: "sh1", db: "sh1", region: "region1", status: ready.
 Instance "cust sdb%11", name: "sh21", db: "sh21", region: "region1", status: ready.
 Instance "cust sdb%21", name: "sh41", db: "sh41", region: "region1", status: ready.
```


Implementation

Create Application User/Schema with Necessary Privileges

```
SQL> alter session enable shard ddl;
SQL> create user apps identified by apps;
SQL> grant connect, resource, alter session to apps;
SQL> grant execute on dbms crypto to apps;
SQL> grant create table, create procedure, create tablespace, create materialized view to app schema;
SQL> grant unlimited tablespace to apps;
SQL> grant select catalog role to apps;
SQL> grant all privileges to apps;
SQL> grant gsmadmin role to apps;
SQL> grant dba to apps;
```


Implementation

SQL> CREATE TABLESPACE SET TBS_SET_1 USING TEMPLATE (DATAFILE SIZE 100M AUTOEXTEND ON NEXT IOM MAXSIZE UNLIMITED

EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO);

Create TABLESPACE SET for SHARDED TABLES

SQL> CREATE TABLESPACE SET TBS_SET_2
DATAFILE SIZE 100M AUTOEXTEND ON
NEXT IOM MAXSIZE UNLIMITED
EXTENT MANAGEMENT LOCAL
UNIFORM SIZE 1M;

Implementation

Create Sharded Tables and Duplicated Tables

SQL> alter session enable shard ddl;

SQL> connect apps/ apps

SQL> CREATE SHARDED TABLE Customers

(custld VARCHAR2 (60) NOT NULL, First-Name VARCHAR2 (60), Last-Name VARCHAR2 (60), Class VARCHAR2 (10), Geo VARCHAR2 (8), CustProfile VARCHAR2 (4000), Passwd RAW (60), CONSTRAINT pk customers PRIMARY KEY (Custld),

CONSTRAINT json customers CHECK (Custprofile IS JSON)) TABLESPACE SET TSP_SET_1 PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

CREATE SHARDED TABLE LineItems

(Orderld INTEGER NOT NULL, Custld VARCHAR2(60) NOT NULL,

Productid INTEGER NOT NULL SYSTEM MANAGED SDB WITH ACTIVE DATA GUARD

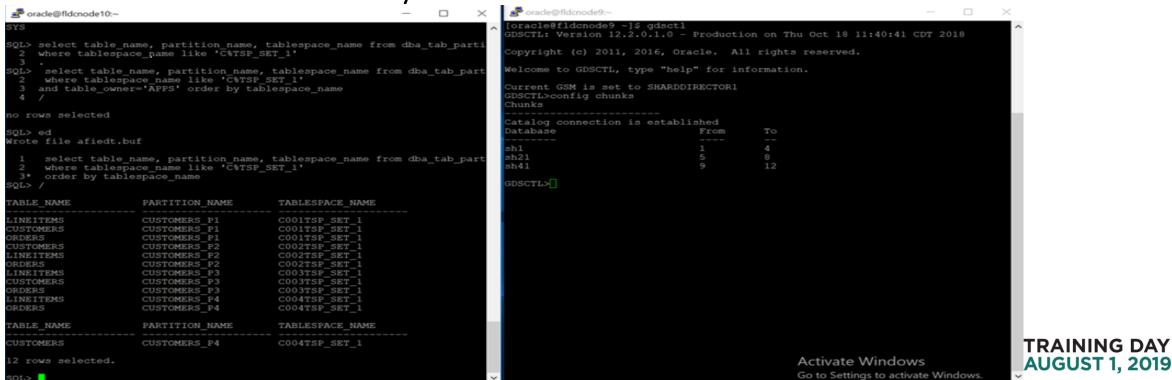
Price NUMBER(19,4), Qty NUMBER,

constraint pk_items primary key (CustId, OrderId, ProductId),

constraint fk_items_parent foreign key (CustId, OrderId)

references Orders on delete cascade

- Implementation
 - Create Sharded Tables and Duplicated Tables


```
SQL> CREATE DUPLICATED TABLE Products

(ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
Name VARCHAR2(128),
DescrUri VARCHAR2(128),
LastPrice NUMBER(19,4)

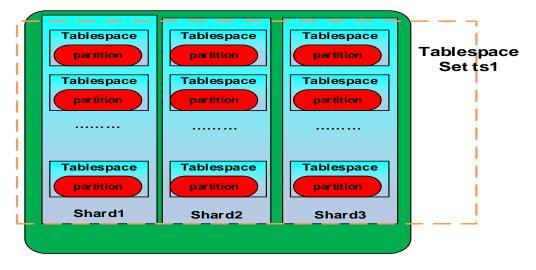
) TABLESPACE products_tsp
```

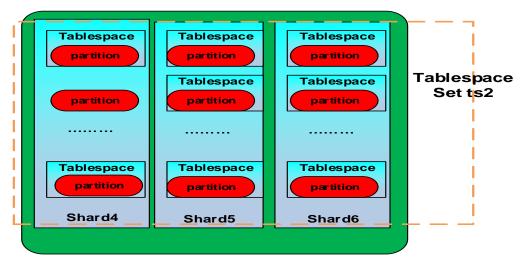

- Implementation
 - Distribution of tables across Shards
 - The left screen shot shows the table partition(chunk) in one shard:
 - 4 Tablespaces: C001TSP_SET_1 to C004-TSPSET_1
 - 4 Chunks: CUTOMMERS_F1 to CUTOMMERS_F4
 - 4 tables in the shard family

Introduction to a sharding project

- Global customer order applications.
 - Database: global customer information, order information, etc.
 - Consolidate databases of business units: current layout:
 - 3 separate databases for regions: Americas, EMEA, APJ
 - One schema per country in each database
 - Same tables structure among schemas.
 - Applications for different countries to connect to difference schema.
- Candidate for sharding
 - Current architecture has limitation on scalability and availability
 - Potential candidate for using Oracle sharding to improve scalability and fault isolation
- Sharding architecture design
 - Add region column to some of sharded tables: shard tables: customer table and its associated tables Region code: List values: ('americas', 'emea', 'apj')

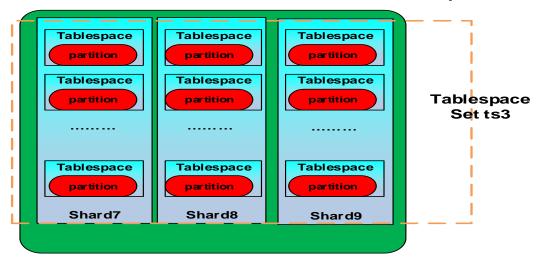
Introduction to a Sharding Project


- Sharding architecture design
 - Sharding method: composite sharding, two levels of sharding:
 - User-defined sharding by region code as sharding key
 - System-managed shard uses consistency hash on custid within the region.
 - Customer table:


```
CREARE SHARD TABLE customers

(custid NUMBER NOT NULL, custname VARCHAR(50),
currencycode VARCHAR(3), address VARCHAR(100),
countrycode VARCHAR(10), regioncode VARCHAR(10),
CONSTRAINT cust_pk PRIMARY KEY(custid, regioncode))
PARTITION BY LIST (regioncode)
PARTITION AUTO
(PARTITIONSET AMERICAS VALUES ('americas') TABLESPACE SET tbs1,
PARTITIONSET EMEA VALUES('emea') TABLESPACE SET tbs2,
PARTITIONSET APJ VALUES('apj') TABLESPACE SET tbs3,
```

Nine shards: shard1-3 for AMERICAS Region, shard 4-6 for EMEA Region.
 shard 7-9 for APJ Region.


Shard Databases Architecture Design

Shardspace for AMERICAS

Shardspace for EMEA

References:

- 1. <u>System Managed Sharding with Active Data Guard Using create shard method, cookbook, Sept 2017</u>
- 2. Oracle Database using Oracle sharding, 19c, E87088-04 February 2019
- 3. Oracle Sharding 18c New Features, Oracle whitepaper | July 2018

Thank You and QA

Contact me at kai_yu@dell.com or visit my Oracle Blog at http://kyuoracleblog.wordpress.com/

